Monocular Multibody SLAM in Dynamic Environments

Thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science in
Computer Science and Engineering
by Research

by

GOKUL B. NAIR
201502034

gokulb.nair@research.iiit.ac.in

International Institute of Information Technology
Hyderabad - 500 032, INDIA
December 2020



Copyright ¢ GOKUL B. NAIR, 2020
All Rights Reserved



International Institute of Information Technology
Hyderabad, India

CERTIFICATE

It is certified that the work contained in this thesis, titled ‘“Monocular Multibody SLAM in Dynamic
Environments” by Gokul B. Nair, has been carried out under my supervision and is not submitted
elsewhere for a degree.

Date Adviser: Prof. K. Madhava Krishna



To my family and friends



Acknowledgments

I would first like to express my feelings of gratitude to my research advisor Prof. K. Madhava Krishna
at Robotics Research Centre (RRC). His prompt guidance and trust in my effort have been integral to
the work that has led to this thesis. I must also thank my mentors J. Krishna Murthy, Junaid Ahmed
Ansari, and Sarthak Sharma. They have been very patient with me throughout my time here and I have
learned an immense lot under their mentorship. I must also thank Bharat Gopalakrishnan, whose timely
discussions and advice have helped me greatly at crucial junctures of my work.

I am also grateful to my co-authors Swapnil Daga, Rahul Sajnani, and Anirudha Ramesh. I couldn’t
have asked for a more cooperative team to work with. I also had the privilege of having a delightful
company at the lab, thanks to Josyula Gopala Krishna, Jyotish P., Unnikrishnan R. Nair, and Nivedita
Rufus. They have always been open to help me out when needed. I have been blessed with a huge
number of wonderful friends who have accompanied me during my time here at III'T-H. Their friendship
and support have driven me through my ups and downs while here.

Finally, I must thank my parents and my brother for their constant support, encouragement, prayers,

and trust in my efforts.



Abstract

This thesis proposes a novel pose-graph based formulation to map moving object trajectories onto a
stationary global reference frame where the moving objects are observed from a single moving camera.
This is performed in a multi-body fashion as a consequence of which we obtain accurate estimations
to both the ego-camera trajectories as well as trajectories to multiple dynamic participants in the scene.
This set up is dovetailed to on-road dynamic vehicles observed from a monocular sensor mounted on a
moving ego-car such as in the KITTI dataset. The original triangulation problem is intractable in this
scenario as it is impossible to triangulate a moving object from a single moving camera unambiguously
unless there are appropriate restrictions on the object motion. The problem of unobservability also
manifests in the form of the relative scale problem in classical multi-body SFM/SLAM formulations
wherein there exists an unresolved scale factor (called as relative scale) such that a family of infinitely
many solutions exist for any pair of motions in the scene. This prevents accurately representing the
moving vehicle and camera in the same stationary frame. We overcome this relative scale factor by
leveraging single-view metrology, advances in deep learning, and category-level shape estimation.

We show in this paper by invoking single view reconstruction techniques, that moving objects can be
represented in the same global frame in which the camera trajectory is represented without any assump-
tions or restrictions on object motion. More specifically we solve for the relative scale problem through
a factor graph formulation where the nodes include camera and moving object poses and thereby obtain
trajectories of the moving object in the starting camera frame. We use Gaussian Process based motion
model prediction and lane constraints to further improve the trajectory estimates and show performance
gain with previous formulations that have attacked this problem. This optimization helps us reduce
the average error in trajectories of multiple bodies over real-world datasets, such as KITTI. To the best
of our knowledge, our method is the first practical monocular multi-body SLAM system to perform

dynamic multi-object and ego localization in a unified framework in metric scale.
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Chapter 1

Introduction

Figure 1.1: Image illustrates the intractability in obtaining reasonable reconstructions for an object.
Three instances of the camera and an object are shown at consecutive time instants. Clearly, any attempt
to triangulate results in the reconstructions showing up at wrong points shown as red points.

Autonomous driving has been a topic of interest to a wide array of stakeholders coming from both
commercial and academic backgrounds. This has led to a heavy investment of time and effort into
developing safe and robust solutions to various problems posed for its success. One of the crucial
aspects that contribute to autonomous driving is its ability to make intelligent observations from visual
cues obtained from a constantly changing environment around it in traffic scenarios. Extensive work
in simultaneous localization and mapping (SLAM) has led researchers to achieve effective solutions to
tackle this problem while utilizing long-range perception capabilities of sensors such as LiDAR, radar
and stereo camera setup.

A widespread ambition to commercialize autonomous vehicles has inspired rigorous exploration of
perception using more economic sensors like single-camera setup. Consequently, research in monoc-
ular SLAM has matured significantly over the last few decades, resulting in very stable off-the-shelf
solutions [7, 9, 21]. However, dynamic scenes still pose unique challenges for even the best such solu-
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Figure 1.2: Part (b) illustrates the relative scale problem where the actual path between the black termi-
nal points is represented by the green trajectory, which is in say metric scale. The estimated trajectory
for the same path may however be obtained as any of the red trajectories which are similar to the required
trajectory but off by a single parameter scale factor. These red trajectories are said to be in ambiguous
scale.

tions. As illustrated in figure 1.1, any attempt to triangulate a moving object from temporally separated
ego-camera-poses results in erroneous estimates rendering the original problem intractable. Tradition-
ally, formulations prior to the Deep Learning era overcame this by introducing restrictions to motions
estimates of any or both of the ego-camera or vehicles in scene [17, 25, 27]. However, these restric-
tions can now be relaxed due to effective depth, pose and shape estimation capabilities in single view
[15, 24,31, 41, 48].

In this thesis, we tackle a more general version of the monocular SLAM problem in dynamic envi-
ronments: multi-body visual SLAM . While monocular SLAM methods traditionally track only the ego-
camera motion, multi-body SLAM deals with the explicit pose estimation of multiple dynamic objects
(dynamic bodies) as well. Despite being an extremely useful problem, it has not received comparable
attention to its uni-body counterpart (i.e., SLAM using stationary landmarks). This can primarily be
attributed to the ill-posedness of monocular multibody Structure-from-Motion [27]. While the scale
factor ambiguity of monocular SLAM is well-known [6, 7, 9, 21], the lesser-known-yet-well-studied
relative scale ambiguity persists with multibody monocular SLAM [17, 25, 27, 28, 33, 42, 44]. This has
been illustrated in detail in figure 1.2.

1.1 Related Works

As mentioned before Simultaneous Localization and Mapping (SLAM) is a topic well sought after by
the researchers around the world. As a result, there have been a huge number of well received approaches
that tackle this problem and showcase commendable performances using sensors like LiDAR, stereo as
well as monocular setup. Given that we strictly stick to a single camera for a sensor to tackle this

problem, we limit our survey of related works also to the approaches that utilize the monocular setup.



Classical multibody frameworks with monocular camera have approached the problem along two
paradigms of thought. In the first, the camera poses are assumed to be known even as the moving object
gets triangulated from temporally separated poses. The observability problem manifests in that such
moving object triangulation necessarily imposes restrictions on object and or camera motion [29, 46].
The earliest approaches to monocular multibody SLAM [5, 8, 13, 19, 44] were based on motion seg-
mentation: segmenting multiple motions from a set of triangulated points. Extending epipolar geometry

to multiple objects, multibody fundamental matrices were used in [19, 33, 42, 44].

Trajectory triangulation methods [3, 28], on the other hand, derive a set of constraints for trajectories
of objects, and solve the multi-body SLAM problem under these constraints. In the other paradigm,
segmented moving objects are individually subject to the SLAM process. This gives a 3D rendering of
the object as though they are stationary along with a camera trajectory relative to those objects. A similar
SLAM treatment applied to the stationary world devoid of moving objects gives the camera trajectory
with respect to the stationary world along with the reconstruction of the stationary world. Unification
of these representations into the stationary frame involves solving the difficult relative scale problem.
Here again, the ill-posed nature manifests in that the relative scale can only be computed by imposing
assumptions on camera and/or object motion [27, 25]. There have been many other works [45, 4] that

treat the SLAM problem in dynamic scenes by removing the dynamic participants.

Ozden et al. [27] extend the multi-body Structure-from-Motion framework [8] to cope with practical
issues, such as a varying number of independently moving objects, track failure, etc. Another class of
approaches applies model selection methods to segment independently moving objects in a scene, and
then explicitly solve for relative scale solutions [42, 8, 5]. It is worth noting that the above approaches

operate of ine, and extending them for online operation is non-trivial.

Kundu ef al. [17] proposed a fast, incremental multi-body SLAM system that leverages motion
segmentation to assign feature tracks to dynamic bodies, and then independently for relative-scale for the
segmented motions. Critical to their success is the underlying assumption of smooth camera motions.
Later Namdev et al. [25] provided analytical solutions for a restricted set of vehicle motions, (linear,
planar, and non-holonomic). The underlying principle here is that since the problem of computing
relative scale is fundamentally ill-posed it can be computed with restrictions on motions of the dynamic
participants in the scene. More recently, Ranftl et al. [32] presented a dense monocular depth estimation
pipeline targeted at dynamic scenes, and resolve relative scale ambiguity. Using optical ow and motion
segmentation, they formulate a convex optimization problem to jointly estimate pixel correspondences

across two-views. However, the obtained solution is still scale-ambiguous.

With the advent of deep learning With the advent of Deep Learning and the subsequent rich repre-
sentations of objects in metric scale from a single view, some of the restrictive assumptions entailed in
classical frameworks can now be relaxed. Improvements to object detection [40, 14, 11, 38] and motion
segmentation have resulted in such methods directly being employed in multi-body SLAM. Reddy et
al. [36] and Li et al. [18] present approaches to multi-body SLAM using a stereo camera. Here however,

the problem is observable, while we handle the harder unobservable case of monocular cameras.



In this thesis, we showcase trajectories of dynamic participants mapped in the same reference frame
as ego trajectories. We distinguish this work from the classical formulations by its lack of any restric-
tions on the vehicle and camera trajectories even as we showcase significant performance gain in terms
of ATE(Absolute Translation Error) metric vis a vis classical formulations [25]. We also contrast our-
selves with modern single view and multi view object reconstruction frameworks [24, 23, 2, 6, 31, 20] in
that we go beyond representing objects only in the local camera frame. We also show performance gain
vis a vis very recent frameworks such as CubeSLAM[47] that have tried to use object representations
to improve ego-vehicle trajectories even as we go past [47] by accurately mapping and benchmarking
trajectories of dynamic participants.

Other related works include 3D object representation from images in single and over multiple views
wherein linear and non-linear object priors are used for accurate localization in 3D[24, 31], those that
integrate objects into a SLAM framework indoors [30] as well as outdoors [47], and those that use object

representations to resolve difficult geometry problems such as scale drift[6].

1.2 Key Contributions

We propose a factor graph formulation over ego-camera and single view object poses and demon-
strate its ability to solve for all trajectories unambiguously in a multi-body fashion to provide resultant
estimates in a unified global frame and in a single metric scale'. This pose-graph formulation takes into
account the inter-object relationships between the ego-camera and the various dynamic vehicles in it is
scene in the form of the respective relative pose estimations obtained from multiple vehicle localiza-
tion pipelines in the ego-camera frame. This is further enhanced by bringing in additional constraints
into the pose-graph through lane priors and Gaussian Process based motion models. This module of the
pose-graph formulation takes into account the benefits of taking the stationary environment features into
the optimization formulation. We show high fidelity estimates of camera trajectory as well as those of
other dynamic participants on road. Appropriate presentation of our results and ablation studies signify
the proposed pipeline’s competitiveness and the role of various key modules in it. To the best of our
knowledge, this is the first monocular multi-body SLAM to represent moving obstacle trajectories in a

unified global metric frame, on long real-world dynamic trajectories.

1.3 Thesis Organization

The entirety of our work has been categorized into three chapters broadly. Chapter.2 re-introduces
some of the prerequisite works and provides a formal introduction to the hyper graph based optimiza-
tion toolbox used for major contributions made through this thesis. Chapter.3 details our efforts and

observations obtained from our work compiled in the form of our first listed publication in Chapter.5.

"We use the term metric scale to denote a coordinate frame in which all distances are expressed in units of metres



(b)

Figure 1.3: Part (a) illustrates the the scene being captured by the monocular sensor set up along with
bounding box detection shown i nthe form of red, green and blue boxes for dynamic vehicles in scene.
Part (b) illustrates the mapping that we aim to obtain through the work detailed by this thesis. The red,
green blue trajectories along with the 3D show the estimated mapping for the detected vehicles in Part
(a) with bounding boxes of the same colour. The black trajectory and wireframe represents the estimate
for he ego-camera motion. This plot ilustrates how we intend to obtain accurate estimates for the ego-
camera as well as various dynamic vehicles in it’s scene in a stationary global frame in a unified metric
scale.

Similarly, Chapter.4 describes the ideas, experiments, observations and analyses prepared through our
work compiled as our second paper listed in Chapter.5. We arrange the contents for these chapters in
the form of various modules. They begin with an overview of the pipeline proposed through the respec-
tive works and follow into the this may involve the initialization pipelines that provide initializations to
various essential components of the pose-graph formulations that we experiment with.



Chapter 2

Background

2.1 Pose-Shape Adjustments for Object Localization

2.1.1 Shape Prior

ooy o

Figure 2.1: Illustration of the shape prior. The red wireframe illustrates the set of initial 3D mean shape
which consists of k ordered keypoints that are visible in the wireframe in the form of k& = 36 corners
and wheel centres respectively. This wireframe is deformed to fit to the specifications of various vehicle
instances found in the camera’s scene using a set of B vectors. Th blue wireframe shows an example of
one such instance of vehicle structure that the wireframe attempts to fit to with help from the scaling of
the deformation vectors represented using the black directed arrows.

Borrowing the notations from Murthy et al.[24], we begin with a basis shape prior consisting of
k  Z— ordered keypoints, for the object used as a mean shape X R3*. Let B Z — basis
vectors be V' R3* B and the corresponding deformation coefficients be A RE. Assuming that a
particular object instance has a rotation of R SO(3) and translation of tr ~ R3 with respect to the
camera, its instance X  R3* in the scene can be shown mathematically using the following shape prior

model:

X=R (X+V A)+tr (2.1)

Here, R = diag([R,R, R, ...,R]) R3* 3% and tr = (tr7,tr”, tr7, ... tr")T  R3*. Also,
X = (X],X2,Xs,..,Xx) R represents the basis shape prior and the resultant shape for the



object instance is X = (Xf, XQT, XTI .., X,;F) R3* where each X; 3 represents one of the k =

36 keypoints in 3D coordinate system from camera’s perspective.

2.1.2 Pose and Shape Adjustments

Now, Let the ordered collection of keypoints in 2D image space be & = (1,22 21" ..., i‘f) R2,

Given that 75 represents the function to project 3D coordinates onto 2D image space using the camera
intrinsic parameters jt = (fz, fy, ¢z, ¢y), fairly accurate estimates for the pose parameters (R, tr) and the

shape parameter (A) for the object instance can be obtained using the following objective function:

miI{{Er = HTrk(R (X+V A —i—tAr;fx,fy,cx,cy) JEHz (2.2)

X
W([Xv Y7 Z]Twu) = <fuZY Cx) = 7TK((‘XrlTa aXI:,;>T7:u') = (W(XlTvu)T7 "'77T(X11;7M)T)T (23)

Minimizing the objective function (c¢f. Eqn 2.2) separately for pose parameters (R, =~\) and shape
parameters () provides us with an optimal fitting of the shape prior over the dynamic object. We
obtain the object orientation as R after pose parameter adjustments. The object’s 3D coordinates from

the camera tr is obtained from the mean of wheel centres.

2.2 g20: Hyper-Graph based Optimization Library

A major part of the work as a part of the contributions made by this thesis has been performed on
the g20[16] library. It is a non-linear least squares based optimization framework[12] implemented in
C++. The optimization problem definition is made by representing the initializations and the various
constraints in the form of a hyper-graph formulation where various kinds of parameterizations of the
many elements of the graph structure gives a mathematical meaning to the graph structure itself. It is
called a pose-graph optimization framework because the main parameterization of any element of the
pose-graph structure is a pose itself which may be defined relative to a generalized stationary world
coordinate system or with respect to the coordinate frame of other objects in the scene which may also

be represented as certain elements of the pose-graph formulation.

2.2.1 Elements

The g2o library allows various kinds of elements that can be incorporated in the pose-graph structure.
Some of the major elements that we make use of in our pose-graph formulations in Sec.3.3.1 and Sec.4.4.

Some of these elements are as follows:
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Figure 2.2: Illustration of the pose-graph elements we make use in this thesis. The left most illustration
is that of ‘A’ node with its parameterization TXV. The central illustration is that of a binary-edge from
a node ‘A’ with estimate TXV to a node ‘B’ with estimate T g/ . The edge measurement is T g‘. The

rightmost illustration is that of a unary edge from a node ‘A’ with estimate TAW to static environment
point ‘p’. The measurement of the unary-edge is given as tr;fv

Node: A node is often used to denote a separate local coordinate system which could be a whole
object or a movable joint of an object. In our formulation, we utilize nodes to represent coordinate
frames of each vehicle instances across various time-stamps including that for the ego-car which
carries the ego-camera atop. As mentioned above, a node ‘A’ has a parameterization set that
majorly includes a pose called the estimate for a node TXV SE(3) strictly defined with respect
to a general static global frame of reference ‘WW’. In our formulation, the global coordinate system
happens to be centered and aligned with the ego-camera’s coordinate system in the very first
recorded time-stamp. The parameterization for a node also includes an ID to differentiate it from

all other nodes in the same pose-graph formulation.

Binary-Edge: This is a relationship defined between any two nodes in the pose-graph formula-
tion. While a node only represents an entity in the pose-graph formulation and does not introduce
a new constraint of any form into the optimization problem, an edge of any type contributes di-
rectly to the problem in the form of a unique constraint defined on one or more of the nodes.
A binary edge defines a constraint specifically between two nodes say ‘A’ nd ‘B’ in a directed
manner, say from ‘A’ to ‘B’. The parameterization of the binary-edge in the above scenario
would mainly contain a pose called a measurement for an edge T4  SE(3) defined for node
‘B’ with respect to the local coordinate system for node ‘A’. Furthermore, the parameterization
also includes a from ID and to ID that specifies from which node to which node is the binary edge
defined.

Unary-Edge: This relates a node in the 3D world with a stationary feature in the environment
as defined in our pose-graph formulation. This type of edge only constrains one unique node

in the pose-graph formulation. The parameterization for this constraint includes a pose called a

w

measurement for an edge tr), R? defined for a node to a point ‘p’ in the environment. This



type of edge attempts to move the node’s geographical location with respect to the world closer

to the same of the point ‘p’ in the environment.

The parameterization for each constraint or edge element for any pose-graph formulation contains
another important part called the information matrix. This is a positive semi-definite inverse-covariance
matrix which defines the weight of various degrees of freedom for the pose defined for that specific
type of edge. Thus, the information matrix is always a square matrix with size equal to the degree of
freedom for the edge’s pose parameter. Since a binary edge’s measurement is in SE(3), the size of it’s
information matrix is 6.X 6 whereas that for a unary-edge is 2X 2 since its measurement is defined in R
The mathematical descriptions of the respective cost functions can be found in Sec.3.3.1 and Sec.4.4.

We make use of this information matrix as a means to weigh the effect of various unary and binary
edges in our pose-graph formulations. An edge with highly weighed information matrix would tend to
cause more variations in the pose-graph initializations post optimization while taking lesser variations
by itself. Thus, edges that take measurements from more accurate sources of initializations must have
highly scaled information matrix, while those which are initialized with less reliable source of data
must be scaled lower. In our work, we maintain a diagonal matrix scaled with an appropriate scalar as

information matrix for various edges.



Chapter 3

Multi-Object Monocular SLAM in Dynamic Environments

We investigate the benefits of our multi pose-graph optimization framework for dynamic objects in a
scene. We show that this framework enables us to cast multiple objects including ego vehicle in a unified
global frame in metric scale. To the best of our knowledge, this is the first monocular multibody SLAM
to represent moving obstacle trajectories in a unified global metric frame and benchmarked vis a vis
ground truth. The quantitative results presented demonstrate the efficacy of the proposed formulation
wherein the average trajectory error in metres for dynamic participants on KITTI sequences is well

within acceptable limits considering the difficulty of the posed problem.

3.1 Overview of the Proposed Pipeline

The complete pipeline we follow can be summarized as follows:
We take a stream of monocular images as input to our pipeline.

We exploit 3D depth estimation to ground plane points as a source of vehicle localizations in

ego-camera frame as explained in Sec. 3.2.1.

Alternatively, as explained in Sec. 3.2.3, we fit a base shape prior to each vehicle instance

uniquely to obtain refined vehicle localizations in ego-camera frame.

To obtain accurate odometry estimations, we scale ORB-SLAM2[22] to metric units by estimating
ego-motion with respect to detected road plane point correspondences over multiple frames in

each sequence. Sec. 3.2.2 describes this module of our pipeline mathematically.

Finally, our optimization formulation Sec. 3.3 uses the above localizations and odometry estima-

tion to resolve cyclic-consistencies in the pose-graph.

This provides us with accurate multi-body localizations in a static global frame and consistent

metric scale.

10



Dy ic Vehicle | Hisath Pose-Graph Optimbzer ; Multi-Objoct
Locallzations in Static

-y 10 Global Frame
- -
- - .q ( in a Unified Metric Scale
-
- -
g, 30 Dopth | il — 9 14 o
ﬁ. Estimation | . . . / i o
=~ k

KITTTracking
sequences

Input Stream of __

manocular Images Pose and
- %‘(; ¥ Shape
| Adjustmonts

Frior and
et matlon Ves tuis

4 -
Odometry Estimation I__ -

p—" 3D Depth
R —r———
ol plane

e Estimation
v
ORBSLAM2 Solve for

Odometry Scale

L L T T

Figure 3.1: Pipeline: We obtain dynamic-vehicle localizations via the modules explained in blue sec-
tion. The mathematical representations to the same can be found in Sec.3.2.3 and Sec.3.2.1. The green
section illustrates our approach to obtain accurate odometry estimations in metric scale, as explained in
Sec.3.2.2. The orange section illustrates a part of the pose-graph structure where the gray, the orange
and the purple nodes represent the nodes for ego-car and two dynamic vehicles in the scene respec-
tively. Moreover, the black, the blue and the red edges represent the camera-camera, vehicle-vehicle
and camera-vehicle edges respectively.

3.2 Vehicle Localization and Odometry Estimation

3.2.1 Depth Estimation for Points on Ground Plane

We obtain 3D depth X, IR3 to a point on the ground plane ‘p’! in camera-frame ‘¢’ in metric scale
by exploiting known camera-height 4 R in metric scale as shown in [43]. Given its 2D homogeneous

c
p

from ground plane as@  R>, We obtain this can be obtained as:

coordinates in image-space as ¢  R? and camera intrinsic parameters as K R3 3 and normal vector

. —hK™' af
e e " 3.1)

Localization estimations from Eqn.3.1 are used as initialization to the camera-vehicle and vehicle-

vehicle binary-edges in our pose-graph formulations in Sec.3.3.1.

3.2.2 Odometry Estimations

3.2.2.1 Scale Ambiguous Odometry

The initialization to our odometry pipeline (¢f. Fig. 3.1) come from the ORB trajectory[22] in a
static-global frame but in an ambiguous ORB scale as opposed to our requirement of metric scale.

We scale the ego-motion from the ORB-SLAM?2[22] input by minimizing the re-projection error of

! Flat-earth assumption: For the scope of this paper, we assume that the autonomous vehicle is operating within a bounded
geographic area of the size of a typical city, and that all roads in consideration are somewhat planar, i.e., no steep/graded roads
on mountains. Consequently, we take normal vector n = [0, —1, 0].

11



the ground point correspondences between each pair of consecutive frames. Given frames ¢ 1 and
t, we have odometry initialization in 3D space in ambiguous ORB scale from ORB-SLAM?2 as T;
and T} respectively both of which are with respect to a static global frame which is the initial frame of
the sequence captured by the ego-camera. We obtain the relative odometry between the two frames as

follows?:

T} '=(T 1) b T 3.2)

3.2.2.2 Scale Initialization

We now obtain ORB features to match point correspondences between the frames ‘¢ 1’ and ‘¢’ and
use state-of-the-art semantic segmentation network[40] to retrieve sets of points S,; 1) and S, that
lie on the ground plane at frames ‘¢ 1° and ‘¢’ respectively. We obtain corresponding points X; | R?
and X; R?in 3D, given the camera height, via Eqn.3.1 as explained in Sec.3.2.1. To reduce noise
incorporated by the above method, we only consider points within a threshold in depth of T = 12 metres
from the camera. Further, we obtain the required scale-factor « that scales odometry from Eqn.3.2 via a

minimization problem as shown in Eqn.3.4, the objective function to which is elaborated as Eqn.3.3:

Fla)=(X; 1 (R' X;+atrel 1) (3.3)

min F(a)T  F(a) (3.4)

«

Here, R ' SO(3) and trf !  R3 represent the relative rotation matrix and translation vector
respectively. After solving the above minimization problem, we finalize our scale factor «  Z+ as the

mean of solutions obtained from the following:
(Xe 1 (R ' X)) try !

o (3.5)
(try DT try !

3.2.3 Pose and Shape Adjustments Pipeline

We make use of base shape prior represented by meanshape X, R3* consisting of k key-
points that represent distinguishable features on vehicle instances in camera frame and B basis vectors
V., R3 Bin 3D scene to make efficient estimation of vehicle pose in camera frame. We achieve
this by minimizing the pose parameters (R~ R3* 3% {r  R3*) and shape parameter (A RP) al-
ternatively over a common objective function £, defined based on reprojection error estimated position
and observed position of each vehicle feature in 2D image space, as shown by [23, 24, 2]. This objective

function can be defined as:

“Weuse to denote matrix multiplication for the scope of this paper.

12



P — . 2
min £, = || mic (BT + Vi) 4+ 855 fo fys ) = 7 (3.6)
RJi,A

The function mx projects 3D coordinates onto 2D image space using camera intrinsic parameters
p= (fz, fy,Car¢y). T R?* represents keypoint based observations in 2D image space as obtained
from hourglass based keypoint localization network [26] for each vehicle instance. The pose-shape
optimizer effectively computes the vehicle’s pose with respect to the local camera frame by solving a
modified form of camera resection problem through Eqn.3.6 [24]. Thus they automatically initialize
the Camera-Vehicle edges qu((:)) and Tf((fill))
representation of the base shape prior and and more details about this procedure has been detailed in a

in the pose-graph optimizer Eqn. 3.11. The mathematical

better manner in Chapter.2.

3.3 Multi-Object Pose Graph Optimizer

w

Figure 3.2: Illustration of a simple pose-graph defined by a constraint defined from nodes A to B by a
binary edge.

3.3.1 Pose-Graph Formulation

Fig.3.2 illustrates the pose graph structure containing two nodes A and B and an edge between
them. Using the terminologies from g20[12], each node A in the pose graph is characterized by a pose
TXV SE(3) called the estimate which defines the pose of node A with respect to a static-global frame
of reference W. Meanwhile, a binary-edge from A to B is represented with a relative pose Tg SE(3)
called the measurement which defines the pose of node A from another node B’s perspective. Fig.3.3
illustrates the pose graph structure between every consecutive set of frames ¢ — 1 and ¢ containing four

nodes and four edges between them. We obtain the estimates for camera nodes (i.e., ch(‘i—l) and T(}/(‘;))

and measurement for the camera-camera edge (i.e. Tf((tt)_l) ) from our odometry estimation (cf.3.2.2).

We use this odometry to register dynamic object localizations from pose-shape adjustment pipeline as

13



explained in Sec.3.2.3 as introduced by [2, 23, 24] to provide for the vehicle node estimates T%,l) and

T%). We obtain measurement for the camera-vehicle edge (i.e., T’ cv(gt__ll)), T :(gt))) from shape and pose
adjustment (cf. 3.2.3). Moreover, we use depth estimation on ground plane using Song et al.[43] as
explained in Sec.3.2.1 as a source of vehicle localizations that is unique from the localizations obtained
from Sec.3.2.3. This registered with our odometry estimations provides for our vehicle-vehicle edge

. t—1
measurement 1.e., T;((t) ).

3.3.2 Cost Functions

As explained in 3.3.1, given that W represents the static world coordinate frame of reference, nodes
A and B are parameterized by poses T  SE(3) and T}/ ~ SE(3) respectively, and a binary
edge from node A to node B is parameterized using a pose Tg‘ SE(3). Each binary edge between
any pair of nodes represents a unique constraint between the respective nodes. This constraint can be

mathematically represented as follows:

Pose Graph for Pose Graph for
Ego-Camera Dynamic Object

Figure 3.3: An illustration of the multi-body pose graph structure under our setting between a pair of
consecutive frames. Nodes in blue correspond to the primary pose graph i.e., pose graph for the ego-
motion. Nodes in green correspond to the secondary pose graph i.e., pose graph for the dynamic objects
in the scene.

Tap=(TH ' T 1F (3.7)
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Assuming relative correctness between each term in Eqn. 3.7, it results in an identity matrix I4

S E(3) irrepective of the order of transformation. Thus, Eqn. 3.7 reduces to:

T8 18 TV =14 (3.8)

We can see that the order in which the transformations are applied do not change the consistency of

the respective cycle in the pose-graph. Thus, Eqn. 3.8 can also be written as follows:

Ty T8 ThH =14 (3.9)

Using Fig. 3.3 as the illustrative reference, let four nodes be c¢(t 1), ¢(t), v(t 1), v(t) which
represents ego-camera at time instant ¢ 1 and ¢ and dynamic vehicle in the scene at time instant
t 1 and ¢ respectively. The node estimates for the four nodes are 7' CV(Z 1) T CV([;), T% 1) and 7T %)
respectively.

Now, following the format of Eqn. 3.8, the cost function for each of the four binary-edges can be

shown mathematically as:

_ pe(t) c(t 1) w
Tee=Tyy'y Ty Y

gt 1) c(t 1) w
Yoot 1) _Tc(t 1) Ty Tv(t 1) (3.10)
() c(t) w .
ch(t) - Tc(t) TW Tv(t)

_ () ot 1) W
Yo =Ty, Ty )0

Here, Tee, Yot 1)> Lew(r) and Ty, represent the cost functions for camera-camera, camera-vehicle
attime instants ¢ 1 and ¢, and vehicle-vehicle edges respectively.

Cumulatively, the above cost functions for a single loop illustrated in Fig. 3.3 can be represented as:

YT=Ye Yo Tow) ' Tau 1) ' (3.11)

On substituting Eqn. 3.10 in Eqn. 3.11, and further simplification, we obtain the resultant function

for cumulative cost as follows:

_ et 1) c(t) v(t) ot 1) _
T_Tc(t) Tv(t) Tv(t 1) Tc(t 1) =14 (3.12)

Clearly, Eqn. 3.12 defines the cyclic consistency within the loop defined by the four binary edges.

3.3.3 Con dence Parameterization

In addition to the relative pose between the participating graph nodes, the parameterization for each
edge also includes a positive semi-definite inverse covariance matrix or the information matrix Qg

RY N where E represents an edge in the pose graph and N represents the dimension of the Lie group in
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which the poses are defined. In this work, all poses and transformations are defined in SE(3), hence we
can take N = 6 for the information matrix {2 corresponding to each edge E in the whole pose graph.
We utilize the information matrix as a confidence parameterization for various sources of input-data
for the pose-graph. To make the most out of this scenario, we scale the information matrix for an edge
E by ascale factor A R such that effective information matrix Q; that is finally passed as a parameter

is obtained as:

Qp = \Qp (3.13)

Where Qg corresponds to the information matrix initialization for the edge F. We categorize all
the edges in our pose-graph formulation into three types namely camera-camera, camera-vehicle, and
vehicle-vehicle edges. Each type of edges corresponds to a unique source of data to provide for the
corresponding constraint. This formulation coupled with the corresponding confidence parameter A,
enables us to scale the effects of the respective categories of edges appropriately. Given that odometry
estimates are fairly reliable, we assign a relatively high constant scaling to its information matrix for our
experiments on all sequences.

Given that we obtain dynamic vehicle localizations in camera frame from two different sources for
camera-vehicle edges and vehicle-vehicle edges respectively as explained in 3.3.1, we make use of this
parameter to scale the information matrix corresponding to the two types of edges in each loop in our
pose graph. It has been observed over a large number of vehicles in the data that localizations obtained
from 3.2.3 performs better than the localizations obtained from 3.2.1 for vehicles that are at a relatively
closer depth to the camera (up to about 45 metres). However, localizations from 3.2.1 are relatively
more accurate when compared to the same obtained from 3.2.3 at depths far away from the camera
(over 45 metres).

This can be attributed to the keypoint localizations being inaccurate for vehicles that are very far
from the camera due to lack of clarity indistinguishable features on these vehicles. However, factors like
visible features do not affect the dynamic vehicle localizations using 3.2.1 as this method relies only on

the camera intrinsic parameters, ground plane normal, camera height and 2D bounding boxes[37].

3.4 Experiments and Results

3.4.1 Dataset

We test our procedure over a wide range of KITTI-Tracking training sequences[10], spanning over
rural and urban scenarios with various number of dynamic objects in the scene. We perform localizations
on objects primarily consisting of cars and mini-vans. Our localization pipeline provides accurate results
over objects irrespective of the direction of motion and maneuvers undertaken by both the ego-car as

well as the other vehicles under the ego-car’s observation in a multi-object scenario.
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The labels provided along with the training sequences for KITTI-Tracking dataset [10] are used as
ground truth for getting depth to the vehicle’s center from the camera. The corresponding ground truth
for odometry comes from GPS/IMU data, which is compiled using the OXTS data provided for all the
KITTI-Tracking training sequences.

3.4.2 Approaches Evaluated

We evaluate the performance of the following approaches:

Namdev et al.[25]: A monocular multibody VSLAM approach that obtains motion for dynamic
objects and ego-camera in a unified scale. The non tractable relative scale that exists between
the moving object and camera trajectories is resolved by imposing the restriction that the object

motion is locally linear.

Our Batch-Wise Approach with Scale Initialized Odometry: A monocular multibody approach
with a batch-wise pose-graph optimization formulation that resolves relationships with dynamic

objects as a means of performing SLAM.

3.4.3 Qualitative Results

3.4.3.1 Pose and Shape Adjustments

Fig.3.6 illustrates ego-motion as well as the motion of various vehicles over many sequences from
the KITTI Tracking dataset[10] after performing pose-graph optimizations in the batch-mode of ex-
periments with scele initialized version of odometry initialization. We obtain accurate localizations in
ego-camera frame by fitting base shape priors to each non-occluded and non-truncated vehicle in the
scene irrespective of its orientation with respect to the ego-camera. While the pipeline is dependent on
the keypoint localizations on these vehicles, factors like large depth from camera are bound to affect the
accuracies with respect to ground truth. However, this approach ensures fairly accurate vehicle localiza-
tions for the pose-graph optimizer to apply its edge constraints on. Fig.3.4 illustrates wireframe fitting
and subsequent mapping in ego-frame for a traffic scenario consisting of multiple vehicles. A more
clear comparison with ground truth can be made through Fig.3.7 which illustrates how our pipeline is
capable of obtaining ego-trajectory estimates along with the trajectories for multiple dynamic vehicles

in the ego-camera’s scene.

3.4.3.2 Odometry Estimation

For accurate visual odometry, we exploit distinguishable static ORB[21, 22] features on the road
plane from entities like curbs, lane markers and any irregularities on the road to obtain quality point

correspondences. While the approach is dependent on factors like reasonable visibility, we obtain robust
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Figure 3.4: Localizations in ego-camera frame after pose and shape estimations for a dynamic multi-
vehicle scenario.

performance over a diverse range of sequences many of which are over a 100 frames long. Fig.3.5
illustrates how our method achieves a fairly accurate scaling of odometry to provide an initialization

that competes well with the corresponding ground truth.

Sequence 3, Frame 10-132, RMSE 2.385932 Sequence 9, Frame 271-350, RMSE 1.354809
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Figure 3.5: Odometry estimations in metric scale in blue. GPS/IMU trajectory is in red and ORB
trajectory in its scale is in yellow. The figure illustrates that our odometry estimation is proficient on
sharp turns and long sequences.

3.4.3.3 Pose-Graph Optimization

We resolve for each cyclic-loop created by the ego-camera and each vehicle (¢f. Eqn. 3.12) in the
scene in our optimization formulation. The optimization problem runs for a maximum of 100 iterations.
Our unified pose-graph based optimization formulation performs consistently well on a wide range of
sequences irrespective of the length of the sequences, number of objects being localized and varying
instance lengths for each vehicle in the same sequence. A unique pose-graph structure for all vehicles

including ego-motion at each time instance ensures effective error re-distribution across all trajectories
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based on efficient confidence allocation in the form of information matrix scaling (cf. Eqn. 3.13). Fig.3.7

and Fig.3.7 illustrates ego-motion as well as the motion of various vehicles over many sequences from
the KITTI Tracking dataset[10].
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Sequence 18: Unified Global Frame
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Figure 3.6: Qualitative results on various sequences for Batch-Wise Approach with Scale Initialized
Odometry. Col I shows input images with bounding boxes for vehicles mapped in Col 2 and Col 3.
While Row I and Row 3 illustrate our performance on multi-vehicle traffic scenarios, Row 2 shows
results for a far away vehicle over a long sequence. Ego-vehicle is shown in black whereas the red, blue
and green plots show unique dynamic vehicles in the scene with corresponding dotted plots showing
the ground truths. Note that entire ground truth trajectory is shown at once in the figures whereas our
results are up to the instance frame shown in Col 1.

19



160

S50

250 1

road
' |==== Euo GT
I' ~—-- Carz GT
200 \ Ego Predicted
\ Car2 Predicted |
'E 150 \'
g \
g 1
E
£ 100
]
50+
0 3
-100 <50 o 50 100
X (In meters)
(b)
road
---— Ego GT
~==+=Carl GT
-=—=Car2 GT
-Card GT
Ego Predicted
| = Carl Predicted
¥ CarZ Predicted
: Card Predicted
4
[

e =

_-—-‘ih

140
120
~ 1o+
E
2
v 80
E
—
== 60
]
a0 F
20
ok
=50 Q
X {in meters)
(a)
160 -
140 -
120}
— 100
@
Z
W o8O0
-E- ﬁﬂ -
1~
40 |
20
0
-5

0 50

X (In meters]

(©)

Figure 3.7: Qualitative top-view plots for Batch-Wise Approach with Scale Initialized Odometry.
The three plots show the top view version for the same sequences shown in the perspective 3D mapping
illustrated in Fig.3.6. The road plane is represented in cyan whereas the odometry estimates are show
as a black trajectory. Other dynamic vehicles in the camera’s scene are show as red, green and blue
trajectories. Dotted trajectories represent the respective ground truth trajectories.
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3.4.4 Quantitative Results

3.44.1 Odometry Estimations

To improve odometry estimations, we place a threshold 7' on depth from camera upto which we
consider point correspondences. This is set based on our observation that the accuracy of the 3D depth
to the point correspondences lowers with depth from the camera. Table 3.1 summarizes our experiments
with various threshold values before we finalize our threshold at T = 12 metres.

While T = 12 meters delivers best results for most sequences mentioned in Table 3.1, we see that
T = 15 metres performs better for sequences 6 and 9, both of which involve the ego-vehicle taking a
sharp turn at an intersection. This is because we rely on ground plane features including and largely
contributed to by the lane markers on the road plane. Given that the segment of road plane in the scene
at an intersection is devoid of any road/lane markers, we do not get enough feature correspondences
from closer segments of the road. Meanwhile, increasing the threshold enables us to pick up points
from the road plane continuing beyond the intersection which contains better scope for quality feature

correspondences in the form of lane markers. Consequently, a relatively larger threshold performs better.

Absolute Translation Error (ATE) (metres)

Threshold (metres)
Seq no. | Seq length 5 5 i3 0
1 41 4.39 | 5.63 | 5.61 | 5.18

3 123 1.65 | 245 | 1.91 | 2.57
4 149 7.64 | 8.84 | 9.59 | 10.96
6 o1 5.90 | 2.37 | 2.38 | 2.82
9 80 5.52 | 1.35| 144 | 1.44
18 141 1.98 | 3.31 | 2.98 | 3.36

Average ATE 4.51 | 3.99 | 3.98 | 4.39

Table 3.1: Analysis between various threshold settings for odometry estimations by computing Absolute
Translation Error (ATE) in metres.

3.4.4.2 Pose-Graph Optimization

Our pose-graph formulation consists of three categories of edges namely camera-camera(C-C) edges,
camera-vehicle(C-V) edges and Vehicle-Vehicle(V-V) edges. Each of these sets of edges are scaled with
a unique confidence parameter \. To analyse how each category of edges constraint our pose-graph and
consequently affect our optimization results, we analyse the effect of removing the constraint put forth
by each type of edges E C-C,C-V,V-V by setting the corresponding A\gr = 0. Table.3.4 and
Table.3.5 summarizes our experiments with the pose-graph optimizer and various combinations of its

edge-parameterizations. It can be noted from Table.3.3 and Table.3.2 that few vehicles in sequence 3
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and the ego-vehicle in sequence 4 perform better when C-C constraints are relaxed. This is because the
odometry estimations are relatively less accurate in these sequences when compared to the other vehicles
in the same sequence. The optimizer generally utilizes reliable edges in each loop of the pose-graph to
improve the relatively less reliable edges, provided their information matrices are scaled appropriately.
Given that the C-C edges are relatively less reliable in these sequences, relaxing its constraints from
the optimization problem enables other edges to improve upon the overall error in these sequences. A
similar explanation can be given for the errors shown by the ego-motion in sequence 18. Since C-V
edges of the ego-motion is relatively more accurate than the corresponding C-V edges of other vehicles,
we obtain a better result for the same when the C-V edge constraint is relaxed. Both C-C and V-V edges

are generated using the odometry estimations and are thus in uenced by its accuracy too.

Absolute Translation Error (ATE) (Root Mean Square) in Global Frame (metres)
Seq number 3 4 18
Car ID 0 1 2 1 2 3 Avg Error
Frame length 41 92 149 62 83 141
Initialization 1.62 | 4.99 | 13.65 | 1.33 | 3.47 | 3.53 4.76
cc, Ccv 1.62 | 5.01 | 13.65 | 1.32 | 3.48 | 3.24 4.72
cc ., Vv 2.88 | 522 | 2.14 | 1.29 | 4.00 | 2.80 3.06
cv , Vv 1.61 | 5.68 | 2.24 | 1.65 | 3.03 | 2.24 2.74
cc,Ccv , VvV | 161|499 | 214 | 1.29 | 3.45 | 2.40 2.65

Table 3.2: ATE for all dynamic vehicles in the ego-camera’s scene in a static-global frame recognized by
the formulation across various sequences. The tables considers the ATEs obtained for the experiments
when various sets of edges are taken into consideration by the optimization problem.

Absolute Translation Error (ATE) (Root Mean Square) in Global Frame (metres)
Seq number 3 4 18
Fra?ne length 123 | 149 | 141 Avg Error
Initialization 1.96 | 6.43 | 2.24 3.54
cc ., cv 198 | 6.43 | 2.24 3.55
cc ., Vvv 1.96 | 6.43 | 2.24 3.54
cv ., Vv 3.54 | 6.41 | 2.76 4.24

cc,cv , VV 1196 | 6.49 | 2.27 3.57

Table 3.3: ATE for all ego-trajectory estimates in a static-global frame recognized by the formulation
across various sequences. The tables considers the ATEs obtained for the experiments when various sets
of edges are taken into consideration by the optimization problem.

Table.3.4 and Table.3.5 compare our performance with Namdever al.[25]. Since ATE is not re-

ported in their literature, we calculate the ATE after running the available implementation. As is evident
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from Table.3.4 and Table.3.5, we showcase superior performance in all sequences when compared with
Namdev et al.[25].

Absolute Translation Error (Root Mean Square) in Global Frame (metres)
Seq No. 3 4 18

Car ID 0 1 2 1 2 3 Avg Error
Frame length 41 92 149 62 83 | 141
Namdever al.[25] | 13.81 | 11.58 | 11.18 | 3.77 | 5.93 | 3.72 8.33
Ours 1.61 | 499 | 214 | 129|345 | 24 2.65

Table 3.4: Quantitative performance for various dynamic vehicles in the scene of the ego-camera for
all evaluated approaches as summarized in Sec.3.4.2 in a static-global frame in a single metric scale.
The errors are computed as root-mean-squared Absolute Translation Errors averaged throughout across
complete trajectories for each of the vehicles instances reported in the table.

Absolute Translation Error (Root Mean Square) in Global Frame (metres)
Seq No. 3 4 18
Frame length | 123 | 149 | 141 Avg Error
Namdever al.[25] | 11.49 | 11.12 | 3.69 8.77
Ours 1.96 | 6.49 | 2.27 3.57

Table 3.5: Quantitative performance for ego-camera trajectories in the scene for all evaluated approaches
as summarized in Sec.3.4.2 in a static-global frame in a single metric scale. The errors are computed
as root-mean-squared Absolute Translation Errors averaged throughout across complete trajectories for
each of the vehicles instances reported in the table.

3.4.5 Summary of Results

While Fig.3.6 and Fig.3.7 illustrate how our trajectories perform with respect to ground truth, Table.3.4
and Table.3.5 reaffirms how our pose-graph formulation successfully redistributes errors about con-
straints with high confidence parameters. Table.3.4 and Table.3.5 vindicate the efficacy of the proposed
pipeline as the absolute translation error(ATE) are typically around 3m for sequences more than 100m
in length. The last row of the table denotes the percentage error, which is significantly low for fairly
long sequences at an average of 3.11%, considering that the original problem is intractable and hard to

solve.
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Chapter 4

Mapping Trajectories of On-Road Dynamic Participants with a Moving

Monocular Camera: A Multibody Approach

Given a temporal sequence of on-road moving camera observations, we estimate ego-motion as well
as motion of other dynamic participants in the scene. In it, ego-car estimations are represented by black
coloured wireframe while red, blue and green wireframes represent other dynamic objects in the scene.
Moreover, different lanes in the scene are represented by red, green and purple planes. The keynote here
is that the vehicle trajectory’s scale is typically not in the same scale as that of the camera trajectory.
To represent both these trajectories in the same scale with respect to a global reference frame forms the

cornerstone of this effort.

4.1 Overview of the Proposed Pipeline

4.1.1 Vehicle Localization

Given an input sequence of images, the pipeline in Fig.4.1 obtains appropriate object localization
from a 3D depth estimator which is detailed in Sec.4.2.1. This module obtains 3D depth initialization
to the ground plane points given the coordinates in 2D image space to a point nearest to the vehicle.
We also obtain reliable vehicle localization in camera frame from the Pose Shape Optimizer module
as explained in Sec.4.2.2 similar to [24, 23, 2] which fits a base shape prior to any object instance in
the scene. These object localization provide for the camera-object edge measurements as explained in
Sec.4.4.

4.1.2 Visual Odometry

Our pipeline follows Monocular ORB-SLAM?2 [22] based initialization for ego-camera trajectory
estimates as detailed in Sec.3.2.2.1. However these estimates are in a different scale space vis a vis that
in which the objects are represented after Pose Shape Optimizer mentioned above. We make use of a

scale initializer sub-module as explained in Sec.3.2.2.2 which takes stationary features on the ground
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Figure 4.1: Detailed Illustration of the proposed pipeline.
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plane as cues and exploits known parameters in metric scale to obtain accurate odometry estimates in
metric scale. Such scale aligned localization of ego-camera and other dynamic objects are used by the

pose-graph optimizer to improve object and camera trajectories.

4.1.3 Trajectory Prediction

We also introduce a trajectory predictor module based on Gaussian Process based regressor as shown
in Sec.4.3 that predicts the pose of dynamic objects for the subsequent time instant + 1 given the corre-
sponding object poses for past n time instances. The vehicle pose computed by the Pose Shape estimator

module is mediated to the global reference frame using scale-initialized ego-camera estimation.

4.1.4 Pose-Graph Optimizer

The quintessential pose-graph optimizer module of the pipeline makes use of factor graph formula-
tion as shown in Sec.3.3.2 to optimize for ego-camera and object poses. It makes use of both dynamic
features in the form of vehicle poses and static features in the form of road-plane points that fall between
the consecutive lane boundaries. In its basic form, it optimizes over the cyclic consistency constraint
based on the current and previous ego-camera and object poses. It also makes use of static lane-based
cues from the environment to correct its pose estimates with respect to the static features. Two ver-
sions of this optimizer are used in this paper. In the first version, the scale initializer is only used as
a bootstrap for vehicle poses while the rest of the vehicle pose estimation is initialized with trajectory
predictor module. In the second version, our pipeline uses scale initialized through the scale initializer
module as the transformation to the pose graph nodes for the entire length of dynamic object traversal.
However, the camera poses are not scale initialized or scale aligned but represented in ORB-SLAM?2’s
scale space itself. Thus, the optimizer lifts the ego trajectory to the same metric scale in which vehicle
trajectories are represented apart from optimizing for the ego and vehicle poses.

4.2 Obtaining Trajectory Initializations in Global Frame

4.2.1 3D Depth Estimator

Given the height at which the monocular camera setup is mounted in metric scale we try to make an
intelligent estimation of 3D location of any point lying on he ground plane[43] given that it is perfectly
horizontal!. Given this height as A R metres, we obtain an initialization to the 3D location Xy R3
of a point xy, R3 on 2D image-space, provided parameters such as the camera intrinsics K R3 3

as well as the normal to the ground plane @  R? are also known. Given our assumption(cf.1), we take

! Flat-earth assumption: For the scope of this paper, we assume that the autonomous vehicle is operating within a bounded
geographic area of the size of a typical city, and that all roads in consideration are somewhat planar, i.e., no steep/graded roads
on mountains. Consequently, we take normal vector n = [0, 1,0].
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normal vector n = [0, 1,0]. Note that we obtain all our observations for any point ‘p’ on the round

plane in the coordinate system conforming to the camera ‘c’.

. hK'
X = e e " (4.1)

These 3D coordinates, obtained in camera frame can initialize the Pose-Shape Optimizer below when
they get depth to the base of the 2D bounding box vehicle detector in the image along the lines of [24].
They can also be used to initialize the translation component of the Camera-Vehicle edges Tf((f)) and

C 1) .
Tv((f 1)) in Eqn.4.10.

4.2.2 3D Object Localization from Pose-Shape Optimizer

In this module, we obtain accurate vehicle localization in the coordinate frame of the monocular
camera in metric scale by fitting a base shape prior[24,23, 2] onto each vehicle instance on the camera’s
scene. This shape prior consists of a base wireframe model that captures the general structure of the car
and a set of vectors that deform this generalized shape prior to fit to the respective vehicle instance in
the scene. We make use of the depth estimation approach brought up in Sc.4.2.1 to initialize the pose
for each vehicle instance in the scene and further perform a set of non-linear least squares optimization
based on ceres-solver[1] to optimize for pose parameters and shape parameter of the wireframe.

. — . 2
min £, = |7 (B + Vi) + 605 fo iy eve) 7 4.2)

As explained in [24], given the base shape prior in the form of a mean wireframe X  R3* and
B Z deformation vectors V. R3* B fork Z ordered keypoints, we try to optimize
for the pose parameters R~ SO(3), tr  R? and the shape parameter A RP using the cost
function defined mathematically in Eqn.4.2. We obtain the observations in the form of an ordered set
of keypoints &  R?* in 2D image-space as obtained from a keypoint localization network[26]. ore

detailed explanations on the shape priors can be found in Chapter.2.

4.2.3 Ego Trajectory Estimation and Scale Initializer

We obtain odometry initializations in global frame from ORB-SLAM?2 [22] that are in an ambiguous

(*) R? in camera frame ¢ at each time instant ¢ from Sec.

non-metric scale. We exploit 3D depth X
4.2.1 to static feature correspondences g on the ground plane in the form of a cost function to reduce the
reprojection error between consecutive frames ¢ 1 and ¢. We finally solve for the scale factor oy, using

the following solution as explained in Sec.3.2.2.2:

(ch(t 1) (Rzg) 1)X§(t)))Ttr§g) 1)
(t Dyp, c(t 1) (4.3)
W ) e

ag =
(trg
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Here, relative rotation matrix and translation vector between frames ¢ 1 and ¢ are represented by

c(t 1) c(t 1)
Rc(t) and trc(t)

ground plane feature g, is used to scale or lift the camera trajectory to the metric scale in which the

. The final scale factor obtained as the mean of individual o, solutions for each

vehicle poses are represented. These poses are then used to obtain the Camera-Camera transformations
c(t 1)

ey

localizations from Sec. 4.2.2 into global frame which goes into the trajectory predictor module in Sec.

4.3.

between successive instances in the pose-graph Eqn. 4.10. These poses also register vehicle

4.3 Gaussian Processing(GP) based Vehicle Trajectory Prediction

As an attempt to formulate a pose-graph based trajectory prediction formulation, we explored a few
approaches that could aid us for the same. We finally went ahead the the Gaussian Process(GP) based
approach for the same.

Given a sequence of last k vehicle states as updated by the pose-graph formulation, we predict the

next vehicle state as:

Vn+1 :f(vna ceey Vn k:+1)

4.4)
Vo =(Ze(n)s Ye(n)s Zem))

We obtain trajectory prediction in X-Z plane. While we maintain a constant object height? through-
out our experiments, we obtain object orientation information from Sec.2.1.1. We model the regression
problem as time-series prediction (TSP) along the lines of [39]. Unlike static model fitting methods that
maps observation at time instances n to a static map f(n), GP based TSP method models a distribution
over f(n) and infers the most likely distribution to give observations at time instances y(n). The dis-
tribution thus adapts itself as recent observations become available and then adapt itself to the changes
in vehicle behaviour with time. In short, GP lends itself as a very competent framework to model both
stationary and dynamic time-series data. As far as implementation goes vehicle observations over the
last n instances z(n), z(n)  GP(pu(n),K(n,n)) where p is the mean function and K(n, n) is the

covariance matrix whose elements are the Kernel function K (n;,n;),where ¢,j 0, ...,n. Then given
the next instant as n + 1, the prior distribution for x, z is given as:

Tpy1 N < ) (4.5)

While the predictive posterior distribution for z(n + 1), z(n + 1) belongs to GPN (m ,o ) where:

K(n,n) K(n,n+1)
Kn+1,n) k(n+1,n+1)

p(n)
p(n+1)

)

m =pn+1)+Kn+1,n)K(n,n) 'y py

R 4.6
o =K(n+1,n+1) Kn+1,n)K(n,n) 'K(n,n+1) (40

2Flat-earth assumption: See footnote 1
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Similarly, the predictive posterior distribution for z at instant n + 1 can be obtained. The GP module
[35] predicts vehicles at next state Vn—i—l from the above distribution, which is used by the pose-graph
optimizer to optimize for the vehicle pose V/, 1, which is fed back to the GP regression module to predict
for the subsequent instance n + 2. Default settings for the mean function and the kernel functions of
the K matrix [35] are used to regress to the next state of the vehicle motion. The next vehicle state
predicted by the GP regresser along with the pose graph optimized current vehicle pose is used to obtain
the Vehicle-Vehicle relations T:((f ) 1) in the pose-graph optimizer Eqn. 4.10.

We make use of the GPML MATLAB Toolbox[34] to portray the required time series prediction
for dynamic vehicle trajectories as regression problems. For the purpose of our experiments, we have
stick to a constant n = 5 frames policy to make a one-step ahead prediction each time based on the
n = b step data fed as input. As mentioned above, the module functions in a 2 dimensional X-Z space
where predictions are made along X and Z axes separately in a manner independent of each other. Our
hyperparameter initializations include an empty mean function as well as a Gaussian likelihood function
which are common to both predictions in X and Z. However, these initializations are made seperately
for prediction models for bot X and Z componants of the trajectory. While the X componant of GPML
predictions are initialized with Squared Exponential Covariance function, that for the X componant ar
einitialized with Fractional Brownian motion covariance function. We also resort to a complete feedback
of predicted samples of our trajectory in our real-time mode of experimentations where we make use of
the actual input data only to bootstrap the initial n = 5 frames of the whole trajectory which is more than
100 frames long. The rest of the trajectory functions on the predictions made in the previous iteration
of Gaussian processing.

However, such a nature of prediction formulation can potentially lead to an exponentially increasing
error model which renders the estimated trajectory unrelatable with respect to the expected trajectory
after a few frames of predictions. We thus make sure each prediction is subject to at least one iteration of
our pose-graph optimization such that, its errors remain within the reach of our pipeline’s optimization
module while at the same time remaining in sync with the relative scale followed by the other objects
considered by our pose graph formulation which is explained in a detailed manner in Sec.4.4.

Alternative approaches such as the following were experimented with for this module before finaliz-
ing GP based prediction model:

EKF based trajectory prediction: An EKF based prediction approach was experimented with
written in python. While this approach performed well for trajectory samples following a fairly
uniform trend in motion, it tended to fail quite consistently on trajectories that followed curved

paths and that showed reasonably frequent changes in velocity.

LSTM based prediction model: An LSTM Cell and an LSTM based model were experimented
with to predict trajectory samples. It was observed that these models could make very accurate
predictions for trajectory points captured in local camera frame. Unfortunately, the same models
did not perform so well for trajectory points captured in a static global frame which was the

requirement.
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The above observations compelled us to stick with the GP based prediction model, which gave fairly
good predictions for reasonable variations in velocity in both magnitude and direction and at the same
provided us fairly accurate predictions in static global frame for long trajectories. It must however be
noted that an LSTM based approach which captures object velocities is expected to perform with a much
better accuracy than all approaches listed above. This approach would potentially correct for the lateral
drift if trained properly. This was realized later in the project timeline and thus was not explored with
sufficient emphasis. Moreover, use of a prediction model that would correct for the lateral drift by itself
would potentially prevent us from experimenting with the lane based constraints explained in Sec. 4.6
with enough emphasis. Thus, it seemed optimal to go ahead with the GP based approach for prediction

model.

4.4 Pose-Graph Formulation

4.4.1 Binary-Edges

Following g2o terminologies, the estimate T gl/ SE(3) characterizes pose for node S in global
frame W. The measurement TS SE(3) denotes a binary-edge from source node S to destination
node D effectively constraining the respective estimates. This can be represented mathematically as the

following cost function:

Ysp=(Tp) ' (@) ' (TY) (4.7)

A more detailed explanation to this can be found in Sec.4.4

4.4.2 Unary-Edges

We also use unary-edges between agent nodes and stationary scene-landmarks denoted as ‘p’ with
3D depth coordinates XII,/V R? in global frame ‘W°. Here, the agent ‘A’ could be ego-camera or the
dynamic object in scene. This does not constrain the orientation of the agent. The resultant constraint
between an agent node ‘A’ with translation vector trff{/ R3 and a world landmark ‘p’ in global frame

can be shown as:

Ua=try X}/ (4.8)

4.4.3 Con dence Parameterization

Our formulation also includes a positive semi-definite inverse covariance matrix or an information

matrix in each edge’s parameterization, shown as QRN ¥

where N is the dimension of the respec-
tive Lie group in which edge F is defined. Here, the pose and transformation for all binary-edges are

defined in SE(3) while the same for all unary-edges are defined in (R)3. We can thus take N = 6 for
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information matrix Qg for each binary-edge and N = 3 for the same for all unary-edges. We exploit
this to convey confidence of each constraint. We do so by scaling {2 upto the effective information

matrix Q0 by a factor A\ R as:

Qp =g (4.9)

4.5 Exploiting Dynamic cues in Pose-Graph Optimizer

As shown in Fig.4.2 we categorize our pose-graph formulation into three sets of relationships rep-
resented by camera-camera, vehicle-vehicle and camera-vehicle edges. Considering consecutive time-
instances ‘¢ 1’ and ‘t’, we aggregate individual cost functions for each edge from Eqn.4.7 to obtain
a cumulative function which reduces to the mathematical representation of a simple cyclic-consistency

for the graph-loop in the following manner:

T:(TCC) (ch(t)) (Tvv) ! (ch(t 1)) !

=T Y @) @y @) (4.10)

We resolve this for each object in scene being considered with respect to ego-camera effectively
solving a single optimization problem for all vehicles together. We categorize all edges in our pose-
graph formulation into three types namely camera-camera, camera-vehicle, and vehicle-vehicle. Each
type corresponds to a unique source of input data for the constraint. This formulation coupled with the
confidence parameter A\, enables us to scale the effects of respective categories of edges appropriately.

Initialization for camera-vehicle edge parameters 7’ UC((:)) SE(3) and Ti((f 11)) SE(3) in Eqn.4.10
come from Sec. 4.2.2. We obtain another set of depth estimates from Sec.4.2.1 while using orientation
from Sec. 4.2.2. While Sec. 4.2.1 performs better at farther depths from camera, Sec.4.2.2 is much more
superior for upto  40m. we thus resort to a coupled confidence parameterization for camera-vehicle
edges to obtain optimal estimates across a wide depth-range. The trajectory predictor from Sec.4.3
provides for the vehicle-vehicle edge parameter T:((tt) YV SE (3) in Eqn.4.10.

Broadly, we experiment in two modes based on whether the camera-camera binary-edge parame-
ter Tf((tt) V' sp (3) in Eqn.4.10 are fed with scale-initialized odometry from Sec.3.2.2.2 or scale-
ambiguous estimations [22] from Sec.3.2.2.1. While we experiment with scale-ambiguous odometry
only on batch-based approaches, we experiment on both batch-based and real-time approaches when it
comes to scale-initialized odometry. In our experiments with scale-ambiguous odometry initialization,
we were compelled to provide minimal confidence to camera-camera edges when compared to that for
the other edges. While for other experiments, given that odometry initializations are fairly reliable, we

assign a relatively high constant scaling to its information matrix for our experiments on all sequences.
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Figure 4.2: An illustration of the pose-graph formulation that resolves cyclic-consistency between object
and camera across consecutive images. Triangular blocks represent ego-camera while rectangular blocks
represent dynamic objects in the ego-camera’s scene respectively. Red, green and black edges represent
camera-camera, camera-object and object-object edges respectively.

4.6 Exploiting Static Cues from the Environment

We also utilize environment static-cues to improve agent motion by constraining it with respect to
lane. We obtain a dense point-cloud set P; for road plane segregated for each lane. As illustrated in
Fig.4.3 we define a unary-edge between an agent ‘A’ and each point p P, on the lane as in Eqn. 4.8.

v=x,tlY -XV), @ P) tl-XV 4.11)

Here, trfflv IR3 represents the translation vector in global frame ‘W’ for an agent node ‘A’ which
could be the ego-vehicle or any dynamic-object in scene. X;V R? is the 3D depth to the lane-point
p P, Fig.4.3 illustrates how the lane based edges are applied to each instance in the trajectory for an
object. To ensure the trajectory behaviour is not lost, we provide a very high confidence to the vehicle-
vehicle edges. Since road could introduce variations at longer depths from the object, we introduce
threshold 7 shown in Eqn.4.11 from each agent instance ‘A’ such that a unary-edge is formed between
‘A’ and a lane-point ‘p’ only if ‘p’ is within a distance 7 R from ‘A’. The coordinates to all lane-

points p P, are obtained from an architecture which is outside the scope of this thesis.
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Figure 4.3: An illustration of lane-based pose-graph formulation from Sec. 4.6. Triangle blocks rep-
resent agent instances, directed red edges represent agent-agent biary-edges and undirected blue edges
represent unary-edges between the agent instance and the stationary lane-points in environment.

4.7 Cumulative Pose-Graph Formulation

Mathematically, we aggregate our pose-graph contraints as a combination of Eqn.4.10 and Eqn.4.11
applied alternatively to on-road trajectory based scenarios. The aggregate pose-graph based costs can
thus be represented as © where:

O=T4+T 4.12)

4.8 Experiments and Results

4.8.1 System Setup

Most of the experiments explained in the following sections have been developed and run using
MATLAB version R2019b. This includes preparation and compilation of input and output data as well
as plotting and visualization of results and statistics. Pose-graph optimizations are performed using the
g20 C++ library [16] (c¢f. 3.3.2, 4.6) and Gaussin Process based time-series predictions from Sec.4.3 are
performed using the GPML toolbox [34]. All of the experiments are performed on a system enabled
with quadcore Intel i7-5500U CPU with 2.40G H z processor.
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4.8.2 Dataset

We report experiments performed on a variety of long on-road training sequences from KITTI-
Tracking dataset [10] with a number of dynamic traffic-objects in the scene, primarily consisting of
cars and minivans. As long as the objects are non-truncated and non-occluded to the ego-camera, our
localizations prove reliable irrespective of various possible orientations and maneuvers subjected to the
object-motion or the ego-motion.

We evaluate our object localizations with respect to the KITTI-Tracking labels [10] and we treat the

GPS/IMU trajectories extracted from the corresponding OXTS files as our ground truth for ego-motion.

4.8.3 Approaches Evaluated

We evaluate the performance of the following approaches:

CubeSLAM[47]: A monocular approach that unifies 3D object detections and and multi-view
object SLAM pipelines in a way that benefits each other.

Namdev et al.[25]: A monocular multibody VSLAM approach that obtains motion for dynamic
objects and ego-camera in a unified scale. The non tractable relative scale that exists between
the moving object and camera trajectories is resolved by imposing the restriction that the object

motion is locally linear.

Our Batch-Wise Approach with Scale Initialized Odometry from Chapter.3: A monocular multi-
body approach with a batch-wise pose-graph optimization formulation that resolves relationships

with dynamic objects as a means of performing SLAM.

Our Batch-Wise Approach with Scale Ambiguous Odometry: In contrast, the ego-camera trajecto-
ries here are in their own scale i.e. the scale in which Monocular SLAM trajectories are estimated,

which is different from the scale in which the vehicle nodes are initialized.

Our Real-Time Approach with Scale Initialized Odometry: Here the pose graph nodes correspond-
ing to ego vehicle trajectory are scale initialized through the method described in section 3.2.2.2.
In other words the camera nodes in the pose graph are always in the same scale as the ego vehicle

nodes.

4.8.4 Experiments

4.8.4.1 Real-Time Approach with Scale Initialized Odometry

We run these experiments enabled with Gaussian Process based trajectory predictions from Sec.4.3
and pose-graph optimization on a frame-by-frame basis. We only use object-localizations to bootstrap

the pipeline in the first /' = 5 frames. A major improvement in this mode of experiment from the above
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batch-based approaches from Chapter.3 and Sec.4.8.4.2 is that these xperiments do not use future trajec-
tory poses to optimize for the current poses. In other words, experiments in Chapter.3 and Sec.4.8.4.2
is more akin to a Multibody SFM framework, while the current effort is a Multibody SLAM framework

that uses only the observations until the current time instance.

However, these experiments are similar to those in Chapter.3 such that the odometry estimates used
for camera-camera binary-edges are scale-initialized from Sec.3.2.2.2 and the confidence parameteriza-
tion is relatively very high for the same consequently. Given that the Gaussian Process based trajectory
predictions may add its own error-model to the vehicle-vehicle binary-edge initialization, they are pro-
vided with comparatively lower confidence parameterization. Meanwhile, the camera-vehicle binary-
edges are fed with a coupled parameterization from Sec.4.2.2 and Sec.4.2.1 similar to the experiments
detailed in Chapter.3 and Sec.4.8.4.2.

4.8.4.2 Batch-Wise Approach with Scale Ambiguous Odometry

Just like in Chapter.3, we again resolve each cyclic-loop for the ego-camera with each vehicle (cf.
Eqn.4.7) in the scene in these experiments thus going ahead with a very similar formulation as Chapter.3.
However, the difference here is that the odometry initialization is provided to the pose-graph structure
as scale ambiguous odometry from Sec.3.2.2.1. I this mode of experiments, our pose-graph formulation
boldly attempts to scale the scale ambiguous initialization upto the same scale as that of the other edges

which is the metric scale post optimization.

Here, since the odometry initialization are at a different ambiguous scale altogether, they are ex-
tremely unreliable to trust with providing a direction to the optimization problem. Thus, we provide
the least confidence to the camera-camera edges initialized with scale ambiguous odometry estimations
when compared to the other edges in the formulation. The camera-vehicle and vehicle-vehicle edges
follow the same confidence parameterization behavior as that in Chapter.3.

Foreseeing that the above formulation alone may not be sufficient to scale the scale ambiguous
odometry accurately to the metric scale, we take aid from the lane based constraints from Sec.4.6 too.
These help curb a potentially high lateral drift in trajectories of the ego-camera as well as other dynamic

vehicles in the camera’s scene.

4.8.5 Qualitative Results

We have obtained very accurate maps for the reported sequences across multiple multi-body dynamic
scenarios from Chapter.3. We aim at improving those results while showing much superior perforance

in the experiments explained above in Sec.4.8.4.2 and Sec.4.8.4.1.
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4.8.5.1 Batch-Wise Version with Scale Ambiguous Odometry

A natural follow up direction to take for us was to test if the same pipeline could handle scale-
ambiguous odometry initialization from Sec.3.2.2.1. Thus, we performed these experiments, again in a
batch-mode as explained in Sec.4.8.4.2 along with lane-based constraints in our pose graph formulation
as described in Sec.4.6. The experiments produced very encouraging results as has been illustrated in
Fig.4.5. The pose-graph optimizer has done a exceptional job at utilizing known trajectory in metric
scale of various dynamic vehicles in scene to pull scale-ambiguous odometry to the metric scale. The
initializations whose scale was so off from the metric scale that the odometry estimates would remain
very close to the world origin itself, have been optimized so efficiently that we obtain close to ground

truth performance for the ego-camera estimates at as a result of the pipeline as is evident from Fig.4.6.

4.8.5.2 Real-Time Version with Scale Initialized Odometry

As an attempt to take a step forward to real-world perception, we also work with a real time version
with scale-initialized odometry initializations where the cyclic-consistencies of the pose-graph structure
from Sec.3.3.2 are resolved for each pair of frames sepertely from each other as the data is made avail-
able. This pipeline also performs wonderfully with a very encouraging set of resultant visualizations as
summarized by Fig,4.7. The performance with respect to ground truth is also commendable as shown
in Fig.4.8. The GPML based trajectory predictor module is used here from Sec.4.3 which makes the
optimization problem slightly more challenging by introducing its own error model to the system.

Fig.4.4 shows the performance of all evaluated approaches as introduced in Sec.3.4.2 on a com-
parative setting for two vehicle instances from out evaluated data. We observe that, while both of our
approaches that take scale-initialized odometry for input from Chapter.3 and Sec.4.8.4.1 show mini-
mal lateral drift throughout the estimated trajectory, there generally a higher order of lateral drift in the
estimated trajectory from our approach from Sec.4.8.4.2 that takes scale-ambiguous odometry inputs.
However, any lapse in terms of lateral drift is made up for by an improved accuracy along the depth of
the camera’s perpective where both of the competitors CubeSLAM[47] as well as Namdevet al.[25] do
not put ahead a great performance. On the whole, based on the qualitative plots from Fig.4.4, we can
see the all our approaches show a near ground truth performance in the reported vehicle instances.

4.8.6 Quantitative Results

Table.4.2 and Table.4.1 summarize the quantitative performance of our approach against each other
as well as other approaches tackling the same problem from Sec.3.4.2. Clearly, we record superior
trajectory estimations with respect to corresponding ground truth. We show substantial improvements
in ATE(Absolute Translation Error) over [47] for each of the three vehicles considered along with the
ego-car in sequence 18. We also outperform Namdever al.[25] on trajectory estimates for instances of

most vehicles recorded in the traffic scene including the ego-camera itself estimations.
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Figure 4.4: Performance of all pipelines evaluated as summarized in Sec.3.4.2 for two vehicle instances
which are Part(a): Sequence 18, Car ID 2 and Part (b): Sequence 19, Ego Car. While blue and yel-
low trajectories represent trajectory estimates from CubeSLAM[47] and Namdevet al.[25] respectively;
red, violet and green trajectories illustrated the performance of our three experiments from Chapter.3,
Sec.4.8.4.1 and Sec.4.8.4.2 respectively. Ground truth trajectory is plotted as a light blue trajectory.

As was visible in the qualitative results above, we can see that our approach from Sec.4.8.4.2 puts
forth a much better performance than all other approaches because of a substantial improvement in
the performance factored in by the lane-based constraints from Sec.4.6. Sec.4.8.7.1 also analyses
the contribution of lane based constraints when compared to the same pipeline in the absence of lane
based constraints. While the trajectory initializations to various vehicle instances in the ego-camera’s
scene relied on the odometry initializations for substantial improvement post pose-graph optimization
in all the experiments that used the scale-initialized odometry iniatializations described in Chapter.3
and Sec.4.8.4.1; the batch-based approach with scale-ambiguous odometry initializations functions in a
different manner such that the cyclic-consistencies and lane-based constraints are resolved separately in
an alternatng fashion. Consequently, both the odometry and the dynamic vehicle trajectory estimations
get several chances to correct themselves with respect to the stationary features in the scene as well as
re-caliberate the inter-object relationships. This in turn leads to the optimization problem being less

reliant on any one initialization sources making itself potentially more effective and robust.

4.8.7 Ablation Studies

4.8.7.1 Impact of Lane-based Constraints in Pose-Graph Formulation

We further make progress in making a thorough analysis as to how significant the lane-based con-
straints are to the overall performance of the pipeline. We do so by simply comparing the performance
of one of our batch based pipelines from Sec.4.8.4.2 before one episode of appication of the lane-based

constraints as described in Sec.4.6 with the same after.
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Figure 4.5: Qualitative results on various sequences for Batch-Wise Approach with Scale Ambiguous
Odometry as explained in Sec.4.8.4.2. Col I shows input images with bounding boxes for vehicles
mapped in Col 2 and Col 3. While Row I and Row 3 illustrate our performance on multi-vehicle traffic
scenarios, Row 2 shows results for a far away vehicle over a long sequence. Ego-vehicle is shown in
black whereas the red, blue and green plots show unique vehicles in the scene with corresponding dotted
plots showing the ground truths. Note that entire ground truth trajectory is shown at once in the figures
whereas our results are up to the instance frame shown in Col 1.
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Figure 4.6: Qualitative top-view plots for Batch-Wise Approach with Scale Ambiguous Odometry
from Sec.4.8.4.2. The three plots show the top view version for the same sequences shown in the
perspective 3D mapping illustrated in Fig.3.6. The road plane is represented light red, light green
and light violet planes whereas the odometry estimates are show as a black trajectory. Other dynamic
vehicles in the camera’s scene are show as red, green and blue trajectories. Dotted trajectories represent
the respective ground truth trajectories.
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Figure 4.7: Qualitative results on various sequences for Real-Time Approach with Scale Initialized
Odometry as described in Sec.4.8.4.1. Col I shows input images with bounding boxes for vehicles
mapped in Col 2 and Col 3. While Row I and Row 3 illustrate our performance on multi-vehicle traffic
scenarios, Row 2 shows results for a far away vehicle over a long sequence. Ego-vehicle is shown in
black whereas the red, blue and green plots show unique vehicles in the scene with corresponding dotted
plots showing the ground truths. Note that entire ground truth trajectory is shown at once in the figures
whereas our results are up to the instance frame shown in Col .
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Figure 4.8: Qualitative top-view plots for Real-Time Approach with Scale Initialized Odometry from
Sec.4.8.4.1. The three plots show the top view version for the same sequences shown in the perspective
3D mapping illustrated in Fig.3.6. The road plane is represented as light red, light green an light violet
planes whereas the odometry estimates are show as a black trajectory. Other dynamic vehicles in the
camera’s scene are show as red, green and blue trajectories. Dotted trajectories represent the respective

ground truth trajectories.
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Absolute Translation Error (Root Mean Square) in Global Frame (metres)

Seq No. 3 4 18
Car ID 0 1 2 1 2 3 Avg Error
Frame length 41 92 149 62 83 141
CubeSLAM[47] - - - 1.89 | 243 | 7.17 3.83

Namdevet al.[25] | 13.81 | 11.58 | 11.18 | 3.77 | 5.93 | 3.72 8.33
Ours(Chapter.3) | 1.61 | 4.99 | 2.14 | 1.29 | 3.45 | 24 2.65
Ours(Sec.4.84.2) | 220 | 2.24 | 1.77 | 1.21 | 2.86 | 1.23 1.92
Ours(Sec.4.8.4.1) | 2.28 2.4 2.14 | 1.35 | 2.31 | 1.83 2.05

Table 4.1: Quantitative performance for various dynamic vehicles in the scene of the ego-camera for
all evaluated approaches as summarized in Sec.3.4.2 in a static-global frame in a single metric scale.
The errors are computed as root-mean-squared Absolute Translation Errors averaged throughout across
complete trajectories for each of the vehicles instances reported in the table.

Absolute Translation Error (Root Mean Square) in Global Frame (metres)
Seq No. 3 4 18
Framg length | 123 | 149 | 141 Avg Error
CubeSLAM[47] - - 2.99 2.99
Namdever al.[25] | 11.49 | 11.12 | 3.69 8.77
Ours(Chapter.3) 1.96 | 6.49 | 2.27 3.57
Ours(Sec.4.8.4.2) | 1.96 | 1.89 | 2.36 2.07
Ours(Sec.4.8.4.1) | 1.96 | 6.43 | 2.24 3.54

Table 4.2: Quantitative performance for ego-camera trajectories in the scene for all evaluated approaches
as summarized in Sec.3.4.2 in a static-global frame in a single metric scale. The errors are computed
as root-mean-squared Absolute Translation Errors averaged throughout across complete trajectories for
each of the vehicles instances reported in the table.
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These are performed on our batch-version of experiments with scale-amibuous ORB initializations
as we observe that this mode of experiments came with a higher degre of potential errors post reolution
of cyclic-consistencies thus providing a wider opportunity for us to make any quality observations with
the lane-based constraints. Moreover, the nature of the error model followed was also dominantly in the
form of a lateral shift, which is what the lane-based constraints targets to concentrate on fixing. We show
that lane-constraints contribute substantially to the ATE for almost all vehicles which are experimented
with, when compared with that before applying lane-based constraints. We summarize our observations
in Table.4.4 and Table.4.3.

Absolute Translation Error (Root Mean Square) in Global Frame (metres)

Seq No. 3 4 18
Car ID 0 1 2 1 2 3 Avg Error
Frame length 41 92 149 62 83 141

Before Lane-Constraints | 2.91 | 2.61 | 2.15 | 1.32 | 3.22 | 1.19 2.23
After Lane-Constraints | 2.20 | 2.24 | 1.77 | 1.21 | 2.86 | 1.23 1.92

Table 4.3: Ablation studies on impact of lane-based constraints on batch-based approach from
Sec.4.8.4.2 for trajectories of various instances of dynamic vehicles in the ego-camera’s scene across
various recorded sequences from our evaluation data.

Absolute Translation Error (Root Mean Square) in Global Frame (metres)
Seq No. 3 4 18
Frame length 123 | 149 | 141 Avg Error
Before Lane-Constraints | 2.26 | 4.82 | 2.53 3.20
After Lane-Constraints | 1.96 | 1.89 | 2.36 2.07

Table 4.4: Ablation studies on impact of lane-based constraints on batch-based approach from
Sec.4.8.4.2 for various instances of ego-camera trajectories across various recorded sequences from
our evaluation data..

4.8.7.2 Impact of Depth-Thresholding in Lane-Constraints

Our experiences with lane-based constraints from Sec.4.6 also got us to introduce a new parameter T
which thresholds the depth from the agent up to which the lane-based constraints are applied. The agent
here could be the ego-camera or a dynamic-object from the scene. This comes based on our extensive
experimentation with the feature point obtained on ground plane. Our major observation was that, given
that considering larger patches of the road along the depth of the camera’s perspective may welcome

larger degrees of variations in the road plane itself in the form of curves or turns. Thus, we felt picking
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lane point correspondences from the near vicinity of the agent itself maybe more reliable to ensure better
performance of lane-base constraints for that instance of the agent.

We thus introduce the depth parameter 7 and experiment with various values for that. We observe that
our pose-graph formulation performs the best when thresholded at 7 = 5m. We record our observations

for various values for 7 over a few objects in scene including ego-camera in Table. 4.5 and Table.3.3.

Absolute Translation Error (Root Mean Square) in Global Frame (metres)
Seq number 3 4 18
(éar D 0 1 2 1 2 5| Ave Brror
Frame length 41 92 149 62 83 141
Depth T = 3.48 | 2.50 | 2.90 | 2.70 | 4.50 | 1.26 2.89
Parameter | 7 =20 | 3.35 | 2.83 | 2.66 | 2.64 | 4.43 | 1.19 2.85
T =101 3.12 | 2.98 | 2.25 | 2.43 | 4.17 | 1.16 2.68
(metres) 7=5 1292|296 | 1.85 | 2.09 | 3.78 | 1.17 2.46

Table 4.5: Analysis over depth parameter 7 for lane-based optimization formulation in batch-based
approach from Sec. 4.6 for trajectories of various instances of dynamic vehicles in the ego-camera’s
scene across various recorded sequences from our evaluation data.

Seq number 3 4 18 Ave Error
Frame length 123 | 149 | 141
Depth T= 217 | 2.38 | 2.44 2.33
Parameter | 7 =20 | 2.00 | 2.31 | 2.40 2.24
T T7=10| 193 | 212 | 2.37 2.14
(metres) | 7=5 | 1.96 | 1.89 | 2.36 2.07

Table 4.6: Analysis over depth parameter 7 for lane-based optimization formulation in batch-based ap-
proach from Sec. 4.6 for various instances of ego-camera trajectories across various recorded sequences
from our evaluation data.

4.8.7.3 Run-time Analysis for the Real-Time Approach with Scale Initialized Odometry

We observe that our pose-graph formulation corresponding to Sec.4.8.4.1 resolves inter-object con-
straints in competitive time-intervals irrespective of number of objects in the scene. Fig. 4.9 shows
how a single and multi-object scenario fare in terms of runtime for each incoming instance. Pose-graph
optimizations (¢f. 4.4) are performed in real time on a quadcore Intel i17-5500U CPU with 2.40GH z
processor. The pose-graph formulation optimizes for a single multibody-instance with an average time-
latency of 16.33ms. Our formulation provides estimates for each recorded instance thus providing

odometry as well as multibody trajectory estimations at identical frame-rates.
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Figure 4.9: Plot illustrating how number of objects in scene do not affect the time-elapsed in our opti-

mization formulation from Sec. 4.8.4.1
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Chapter 5

Conclusions

Monocular Multi-body SLAM is indeed a difficult problem due to its ill-posed as it is impossible to
triangulate a moving vehicle from a moving monocular camera. This observability problem manifests
in the form of relative scale when posed into the Multibody framework. With the arrival of single view
reconstruction methods based on Deep Learning, some of these difficulties are alleviated, but one is still
entailed to represent the camera motion and the vehicles in the same scale. There have been very few
attempts to tackle this problem head on even in the Deep Learning era. Classical methods were able
to unify vehicle and camera trajectories for few number of frames while modern methods that involve
Deep Learning and projective geometry to compute object pose and shape do so only in the local camera
frame as the problem of observability continues to be difficult to resolve.

This paper proposed a simple yet effective two stage solution to the problem. It lifts the camera
trajectory to the same scale as object trajectories by making use estimated depth to ground plane feature
correspondences. This ensures sufficient initialization for the trajectories to the ego-vehicle and other
dynamic participants with respect to a unified frame in metric scale. It further robustifies for the scale
and camera and vehicle poses through a multi-body pose-graph optimizer framework that can seamlessly
integrate many moving objects. Both incremental and batch formulations were proposed and significant
performance gain with prior formulations are established.

We show trajectories of dynamic objects and ego vehicle over sequences of more than a hundred
frames in length with high fidelity ATE (Absolute Translation Error). To the best of our knowledge, this
is the first such method to represent trajectories in the global frame over long sequences. The pipeline
accurately maps trajectories of dynamic participants far away from ego camera and its scalability to map
multi-vehicle trajectories is another salient aspect of this work. Future directions include integrating

Deep Prediction modules to further improve the mapping of dynamic trajectories.
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